The mixed lineage kinase DLK is oligomerized by tissue transglutaminase during apoptosis.
نویسندگان
چکیده
Current evidence suggests that the mixed lineage kinase family member dual leucine zipper-bearing kinase (DLK) might play a significant role in the regulation of cell growth and differentiation, particularly during the process of tissue remodeling. To further explore this working model, we have investigated the regulation of host and recombinant DLK in NIH3T3 and COS-1 cells undergoing apoptosis. Using calphostin C, a potent and selective inhibitor of protein kinase C and a recognized apoptosis inducer for various cell types, we demonstrate, by immunoblot analysis, that DLK protein levels are rapidly and dramatically down-regulated during the early phases of apoptosis. Down-regulation in calphostin C-treated cells was also accompanied by the appearance of SDS- and mercaptoethanol-resistant high molecular weight DLK immunoreactive oligomers. Experiments aimed at elucidating the mechanism(s) underlying DLK oligomerization revealed that the tissue transglutaminase (tTG) inhibitor monodansylcadaverine antagonized the effects of calphostin C almost completely, thereby suggesting the involvement of a tTG-catalyzed reaction as the root cause of DLK down-regulation and accumulation as high molecular weight species. In support of this notion, we also show that DLK can serve as a substrate for tTG-dependent cross-linking in vitro and that this covalent post-translational modification leads to the functional inactivation of DLK. Taken together, these observations suggest that transglutamination and oligomerization may constitute a relevant physiological mechanism for the regulation of DLK activity.
منابع مشابه
DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity
The c-Jun N-terminal kinase (JNK) signaling pathway is essential for neuronal degeneration in multiple contexts but also regulates neuronal homeostasis. It remains unclear how neurons are able to dissociate proapoptotic JNK signaling from physiological JNK activity. In this paper, we show that the mixed lineage kinase dual leucine zipper kinase (DLK) selectively regulates the JNK-based stress r...
متن کاملThe Mixed-Lineage Kinase DLK Is a Key Regulator of 3T3-L1 Adipocyte Differentiation
BACKGROUND The mixed-lineage kinase (MLK) family member DLK has been proposed to serve as a regulator of differentiation in various cell types; however, its role in adipogenesis has not been investigated. In this study, we used the 3T3-L1 preadipocyte cell line as a model to examine the function of DLK in adipocyte differentiation. METHODS AND FINDINGS Immunoblot analyses and kinase assays pe...
متن کاملPar-4 is an essential downstream target of DAP-like kinase (Dlk) in Dlk/Par-4-mediated apoptosis.
Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensi...
متن کاملDLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury.
The cell intrinsic factors that determine whether a neuron regenerates or undergoes apoptosis in response to axonal injury are not well defined. Here we show that the mixed-lineage dual leucine zipper kinase (DLK) is an essential upstream mediator of both of these divergent outcomes in the same cell type. Optic nerve crush injury leads to rapid elevation of DLK protein, first in the axons of re...
متن کاملAntiapoptotic and trophic effects of dominant-negative forms of dual leucine zipper kinase in dopamine neurons of the substantia nigra in vivo.
There is extensive evidence that the mitogen-activated protein kinase (MAPK) signaling cascade mediates programmed cell death in neurons. However, current evidence that the mixed linage kinases (MLKs), upstream in this cascade, mediate cell death is based, in the in vivo context, entirely on pharmacological approaches. The compounds used in these studies have neither complete specificity nor se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 42 شماره
صفحات -
تاریخ انتشار 2000